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The recent emerging field of synthetic dimension in photonics offers a variety of opportunities for manipulating
different internal degrees of freedom of photons such as the spectrum of light. While nonlinear optical effects can
be incorporated into these photonic systems with synthetic dimensions, these nonlinear effects typically result in
long-range interactions along the frequency axis. Thus, it has been difficult to use the synthetic dimension concept
to study a large class of Hamiltonians that involves local interactions. Here we show that a Hamiltonian that is
locally interacting along the synthetic dimension can be achieved in a dynamically modulated ring resonator
incorporating χ �3� nonlinearity, provided that the group velocity dispersion of the waveguide forming the ring
is specifically designed. As a demonstration we numerically implement a Bose–Hubbard model and explore pho-
ton blockade effect in the synthetic frequency space. Our work opens new possibilities for studying fundamental
many-body physics in the synthetic space in photonics, with potential applications in optical
quantum communication and quantum computation. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.396731

1. INTRODUCTION

The concept of the synthetic dimension enables one to explore
higher-dimensional physics in lower-dimensional systems
[1–14]. In photonics [15,16], the synthetic dimension can
be achieved by exploiting various degrees of freedom of light
such as its frequency [17,18], spatial mode [19], or orbital an-
gular momentum [20], and by specifically controlling the cou-
pling between these degrees of freedom [21–23]. While initially
explored mostly theoretically [24–30], very recently there have
been a number of important experimental developments, in-
cluding the first experimental demonstration of topological
insulators with synthetic dimensions [19], the observation of
the effective gauge potential in two independent synthetic di-
mensions [31], the measurement of band structure along the
frequency axis of light [32], and the control of the light spec-
trum in synthetic space [33,34].

Most of the existing theoretical and experimental works on
the synthetic dimension in photonics concern linear processes
without photon-photon interactions. Certainly, it would be of
interest to consider nonlinear systems where there is photon-
photon interaction. Moreover, since one of the major objectives
by going into synthetic dimension is to create a platform to

study specific interacting Hamiltonians that are of physical sig-
nificance, it would be important to develop a strategy to syn-
thesize these interacting Hamiltonians. A very large class of
interesting interacting Hamiltonians have local interactions
[35–39]. For example, in the Bose–Hubbard Hamiltonian

HBH � −ℏJ
X
m

�a†mam�1 � h:c:� − ℏg
2

X
m

a†ma†mamam, (1)

where a†m (am) are the creation (annihilation) operators for
photons on the mth lattice site, J is the coupling coefficient,
and g is the local nonlinear strength. The interaction termP

ma
†
ma†mamam consists only of on-site interaction. Attempts

to achieve such locally interacting Hamiltonians in synthetic
space have been made in photonics in the geometric angular
coordinate [40] and also in ultracold atoms with spin being
the internal degree of freedom [41]. On the other hand, as
is known and we will briefly reiterate below, the standard form
of nonlinear optics typically leads to a form of interaction that is
nonlocal in the synthetic space [42,43], i.e., the Hamiltonian
contains terms such as

P
m, n, p, qa

†
ma†napaq, which describe inter-

actions of photons at different lattice sites. How to achieve a
Hamiltonian where the interactions are completely local in
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the synthetic space for photons thus represents an important
open theoretical question.

In this paper, we consider a synthetic frequency dimension
of light, formed in a ring resonator incorporating a modulator.
To create photon-photon interaction we consider χ�3� processes
in the waveguide forming the ring. We show that a local pho-
ton-photon interaction in the frequency dimension can be
achieved with a careful design of the group velocity dispersion
of the waveguide [Fig. 1(a)]. As a demonstration we show that
this system can be used to demonstrate a Bose–Hubbard model
and achieve photon-blockade effects along the synthetic axis.
This work here significantly broadens the range of physics phe-
nomena that can be studied in photonic synthetic space and
may lead to new opportunities in quantum simulations and
in the manipulation of light.

2. MODEL

We start with a brief review of the ring resonator under the
dynamic modulation as shown in Fig. 1(b) [24,44], which
naturally leads to a synthetic dimension of light along the
frequency axis. We consider a ring composed by a single-mode
waveguide with an effective refractive index neff and a length l .
For simplicity, assuming zero group velocity dispersion in the
waveguide, the ring resonator supports resonant modes
at the resonant frequencies ωm � ω0 � mΩ, where Ω ≡
2πc∕neff l ≪ ω0 is the free spectral range (FSR) for the ring.
We place a phase modulator inside the ring and choose the
modulation frequency to be equal to the FSR. The transmission
of light passing through the modulator can be described by a
time-dependent transmission coefficient [45]

T � ei2α cos�Ωt�, (2)

where α is the modulation amplitude. We assume that the field
experiences small changes for each round-trip. Then, after one
round-trip, the change of the field amplitude Em for the mth
resonant mode can be written as [24]

2π

Ω
∂Em

∂τ
≡ ΔEm � iα�Em�1 � Em−1�, (3)

where τ is the slow time variable [46]. Equation (3) is valid
when α ≪ 1, so one can safely neglect the generation of side-
bands with orders larger than 1 for light passing through the

modulator. The dynamics of Eq. (3) is described by an effective
Hamiltonian:

H 0 � −ℏJ
X
m

�a†mam�1 � h:c:�: (4)

Here J � αΩ∕2π is the modulation strength and am (a†m) is
the annihilation (creation) operator for the mth resonant
mode. The Hamiltonian in Eq. (4) describes a one-dimensional
tight-binding model along the synthetic frequency axis [see
Fig. 1(b)]. With this approach, a wide variety of noninteracting
Hamiltonians with different connectivities and topological
properties can be created [15]. However, there have been far
less works on creating important interacting Hamiltonians.

As an illustration of the general difficulty as well as our ap-
proach of creating locally interacting Hamiltonians in the fre-
quency synthetic dimension, we aim to synthesize the effective
Bose–Hubbard Hamiltonian H 1 � HBH in Eq. (1) in the syn-
thetic frequency dimension. Although nonlinear optical phe-
nomena in many photonic materials have been extensively
studied, creating the Hamiltonian of Eq. (1) in the frequency
synthetic space is in fact nontrivial [42]. The introduction of
the nonlinearity typically leads to long-range interactions over
all synthetic lattice sites. For example, the dynamically
modulated ring as shown in Fig. 1(b), with a third-order non-
linear susceptibility χ�3�, is described by an interacting
Hamiltonian [43]

H 2 � −ℏJ
X
m
�a†mam�1 � h:c:� − ℏg

2

X
m, n, p, q

a†ma†napaq

−
ℏg
3

X
m, n

�a†ma3n � h:c:�, (5)

as can be derived using the rotating wave approximation. In
Eq. (5), the second and third terms describe two four-wave-
mixing (FWM) effects. The second term describes the hyper-
parametric oscillation process involving four modes with fre-
quency relationship ωm � ωn � ωp � ωq. The third term
describes the third-harmonic generation (THG) process with
ωm � 3ωn. Comparing Eq. (1) with Eq. (5), we see that
the interacting term in Eq. (1) corresponds to the self-phase
modulation (SPM) process. In Eq. (5), however, in addition
to the SPM process, other terms that describe the cross-phase
modulation (XPM) process, other hyperparametric processes,

Fig. 1. (a) A ring resonator, composed by two types of single-mode waveguides A and B, undergoing the dynamic modulation. (b) A ring under
the dynamic modulation supports a synthetic lattice along the frequency dimension. (c) The ring is coupled with the through-port and drop-port
waveguides.
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and the THG process result in long-range interactions between
different resonant modes in the ring (see Fig. 2). While here for
illustration purposes we consider a specific type of nonlinearity,
the observation is in fact rather general: standard nonlinearity
does not lead to local interactions in the synthetic frequency
dimension.

In order to synthesize the Bose–Hubbard model where the
interaction is local along the frequency dimension, we propose
a ring consisting of two sections of waveguides. The two sec-
tions have the same χ�3� nonlinear susceptibility. However, they
have opposite GVD as illustrated in Fig. 1(a). In the linear re-
gime of light propagation, for each complete round-trip as light
goes around the ring, the dispersion effect in the two waveguide
sections cancels. Hence, this ring also features equally spaced
resonances along the frequency axis, same as a ring with zero
GVD, and a one-dimensional synthetic frequency dimension
can be created in this ring by applying the dynamic modula-
tion. On the other hand, in each waveguide section, due to the
GVD, the only phase-matched processes are the SPM and
XPM processes. Moreover, as we will show below, in any
Hilbert space with a fixed photon number, the Hamiltonian
including both SPM and XPM processes in fact reduces to a
Hamiltonian only including the SPM process. We therefore
show that our design supports an effective Bose–Hubbard
Hamiltonian [Eq. (1)] along the frequency axis.

In the following, we explain our design in detail: we start
with reviewing the light propagating in a dispersive waveguide,
followed by considering the FWM process in such a waveguide,
and then go to the discussion of the ring composed of dispersive
waveguides with nonlinearity. We first consider light propagat-
ing inside a single-mode waveguide. The evolution of the field
amplitude A�z,ω� with the frequency ω at the position z in the
waveguide can be described as [47]

∂A�z,ω�
∂z

� −iβ�ω�A�z,ω�, (6)

where β�ω� denotes the propagation wavevector. β�ω� can be
expanded around the reference frequency ω0, i.e.,

β�ω� − β�ω0� �
dβ

dω

����
ω0

�ω − ω0� �
1

2

d2β

dω2

����
ω0

�ω − ω0�2 �…:

(7)

Here we set β0 � β�ω0�, vg � �dβ∕dω�−1 is the group veloc-
ity, and β2 � d2β∕dω2 is the GVD around ω0. By neglecting

the higher-order terms in Eq. (7), one can write the field am-
plitude of light after it propagates through a waveguide with the
length L:

A�z � L,ω� � A�z � 0,ω�e−iβ0L−i�ω−ω0�L∕vg−iβ2�ω−ω0�2L∕2:
(8)

Note that the GVD induces a frequency-dependent phase
delay.

Next, we explore the light propagating through the wave-
guide section having a positive GVD (β2 > 0) and χ�3� as
shown in Fig. 1(a). For simplicity, we consider two incident
waves with the frequencies ω1 and ω2 in the vicinity of the
reference frequency ω0. We look for the solution for a general
FWM process where output fields are generated at frequencies
ω3 and ω4, satisfying the energy conservation relation
ω3 � ω4 � ω1 � ω2 [see Fig. 3(a)]. We also assume the nar-
rowband limit, i.e., jω0 − ωmj ≪ ω0, m � 1, 2, 3, 4. The re-
sulting coupled-mode equations under the slowly varying
amplitude approximation are [42]

∂Ã3

∂z
� i

ω2
0

2β0c2
χ�3�Ã1Ã2Ã�

4 e
−iΔkz , (9)

∂Ã4

∂z
� i

ω2
0

2β0c2
χ�3�Ã1Ã2Ã�

3 e−iΔkz , (10)

where Ãm � Ameiβ�ωm�z and the momentum mismatch is

Δk � β2
2
��ω3 − ω0�2 � �ω4 − ω0�2 − �ω1 − ω0�2

− �ω2 − ω0�2�: (11)

At frequencies around ω0, the phase-matching condition
(Δk � 0) is satisfied if ω1 � ω2 � ω3 � ω4, which corre-
sponds to the SPM process, or ω1 � ω3�4� and ω2 �
ω4�3� ≠ ω1, which correspond to the XPM process. For other
FWM processes with the phase-mismatching condition
Δk ≠ 0, the efficiency for frequency conversion is proportional
to the phase-mismatch factor, i.e., sinc2�ΔkL�, as plotted in
Fig. 3(b). For jΔkLj ≥ π, the conversion efficiency is signifi-
cantly suppressed. In particular, for jΔkLj � nπ with n being
the positive integer, sinc2�ΔkL� � 0, meaning that FWM
processes other than SPM and XPM vanish completely. A sim-
ilar argument is also valid for the THG process, where the

Fig. 2. Four-wave-mixing processes in a ring with a third-order nonlinear susceptibility including the hyper-parametric processes (SPM, XPM,
and others) and the THG process.
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conversion efficiency of THG is also strongly reduced due to
the phase mismatching.

Having treated a light propagation effect in a single
waveguide section, we now discuss the ring in Fig. 1(a). The
waveguide A with the length L � l∕2 has a positive GVD
(β2,A > 0). The waveguide B with the length L has a negative
GVD (β2,B < 0), and we assume that β2,B � −β2,A. The quad-
ratic term of the phase delay in Eq. (8) due to the dispersion
effect is therefore compensated once the light propagates
through the entire ring. Hence, this ring supports equally
spaced resonant modes at the resonant frequencies ωm with
the FSRΩ. As light goes through each round-trip, its amplitude
experiences a small change due to both the nonlinearity and the
dynamic modulation. After a round-trip, the change of the field
amplitude Ãm for themth mode at frequency ωm can be written
from Eqs. (3), (9), and (10):

2π

Ω
∂Ãm

∂τ
� iα�Ãm�1 � Ãm−1� � i

ω2
0

2β0c2
χ�3�jÃmj2Ãm

� i
X
n≠m

2ω2
0

β0c2
χ�3�jÃnj2Ãm, (12)

where τ is the slow time variable. The corresponding effective
Hamiltonian from Eq. (12) reads

H 3 � −ℏJ
X
m

�a†mam�1 � h:c:� − ℏg
2

X
m

a†ma†mamam

− ℏg
X
n≠m

a†na†maman: (13)

Here g � 3ℏω2
0χ

�3�∕V n40ϵ0 describes the strength of the non-
linearity [48,49], where V is the effective mode volume,
n0 � n�ω0�, and ϵ0 is the permittivity of free space.

In a Hilbert space where the total number of photons N is
conserved in the system, Eq. (13) can be further simplified by
noting that

X
n≠m

a†na†maman �
X
m
a†mam

�X
n≠m

a†nan

�

�
X
m

a†mam�N − a†mam�

� N 2 − N −
X
m

a†ma†mamam: (14)

The resulting Hamiltonian reads

H 4 � −ℏJ
X
m
�a†mam�1 � h:c:� � ℏg

2

X
m
a†ma†mamam

− ℏg�N 2 − N �: (15)

One notices that the third term ℏg�N 2 − N � is just a constant
shift in energy. The change of sign in the second term does not
affect the physical observables for bosonic systems. Hence, the
Hamiltonian Eq. (15) [or the Hamiltonian Eq. (13)] describes
the same physics as our desired Hamiltonian in Eq. (1). We
have therefore shown that a Bose–Hubbard model [50–52]
with local interaction in the synthetic frequency dimension
can be achieved by the ring shown in Fig. 1(a).

3. RESULTS AND DISCUSSIONS

To demonstrate some of the physics effects along the synthetic
frequency dimension in the Hamiltonian Eq. (13), we perform
numerical simulations with photon number N � 2. External
waveguides are coupled with the ring, where the photons
are input into the ring from the through-port and the detection
can be made at the drop-port waveguide [see Fig. 1(c)]. Hence,
our system becomes open, and the photon transport property is
described by the input-output formalism in the Heisenberg pic-
ture [53,54]:

dam�t�
dt

� i
ℏ
�H 3, am� − γam�t� � i

ffiffiffi
γ

p
c in,m�t�, (16)

cout,m�t� � cin,m�t� − i
ffiffiffi
γ

p
am�t�, (17)

d out,m�t� � −i
ffiffiffi
γ

p
am�t�, (18)

where γ is the waveguide-cavity coupling strength. cin,m (cout,m)
and d out,m are the input (out) annihilation operators for pho-
tons at the frequency ωm in the through-port and drop-port
waveguides, respectively.

As the input state, we consider a strongly correlated photon
pair [55]

jϕ�p, q�i

�
ZZ

dt1dt2f
�
t1 � t2

2

�
h�t1 − t2�c†in,q�t2�c†in,p�t1�j0i,

(19)

which satisfies the normalization condition hϕjϕi � 1. We
further assume that h�t� has an extremely short temporal width.
Hence, the input state Eq. (19) describes the scenario where
two photons at the frequencies ωp � Δω and ωq � Δω are
simultaneously injected into the through-port waveguide.
We choose f �t� � e−�t−tD�2∕Δt2e−i2Δωt , where tD describes
the timing of the incident photons, Δt is the pulse temporal
width, and Δω is the small frequency detuning. To excite
the individual sites in the synthetic lattice along the frequency
dimension, the condition 1∕Δt ≪ Ω is required.

To measure the quantum statistics of the photons inside
the ring, we define the two-photon correlation function
G�2�

m,n�t , t 0� � hϕjd †
out,m�t�d †

out,n�t 0�d out,n�t 0�d out,m�t�jϕi [56].
We then compute the two-photon correlation probability in
which two output photons coincide in time

Fig. 3. (a) A general four-wave-mixing process in a waveguide with
the third-order susceptibility χ�3�. (b) The plot of ΔI ∝ sinc2�ΔkL�
showing the effect of the phase mismatching.
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Pm,n �
Z

dtG�2�
m,n�t , t�: (20)

The simulation procedure follows the standard formalism
[55] but in the synthetic frequency dimension. We consider
the synthetic lattice in Fig. 1(b) involving 31 resonant modes
(m � −15,…, 15) and set γ � 0.2J , tD � 20J−1, and Δt �
6.4J−1. We also choose Δω � g to compensate for the overall
frequency shift in the effective Bose–Hubbard model. A photon
pair jϕ�−4, 4�i is injected into the waveguide. We consider the
cases with g � 0, g � 2J , and g � 10J in the simulations.
Normalized distributions of the two-photon correlation prob-
ability Pm,n for each choice of g are plotted in Figs. 4(a)–4(c).
There is no photon interaction in the g � 0 case. Notice the
existence of nonzero probability Pm,m, where the output pho-
tons have the same frequency. As the interaction increases, the
output photon statistics changes. For a large g � 10J , the cor-
relation probability Pm,m � 0 for all m. High nonlinearity thus
introduces a large blockade effect at each resonant mode along
the synthetic frequency dimension.

We next use the photon pair jϕ�−15, −15�i as the input
and assume that there is a sharp boundary at ω−16 in the syn-
thetic frequency dimension. Such an artificial sharp boundary
can be created by adding another ring to strongly couple only to
the −16th resonant mode but no other modes [30]. In this in-
put state the two photons have the same carrier frequencies.
Figures 4(d)–4(f ) show the simulated normalized distributions
of the two-photon correlation probability Pm,n for different g .
At g � 0, there is a strong probability for the two photons to
have the same frequencies. In contrast, with a large nonlinearity
g � 10J , away from the input frequency at ω−15, there is very
little probability that the output photons exhibit the same
frequencies. Again, we see a strong photon-blockade effect
in the synthetic frequency dimension.

Simulations in Fig. 4 show the photon-photon interaction
along the synthetic frequency dimension, which is an analog to
the on-site nonlinear interaction in the spatial dimension
[57–59]. Moreover, we note that simulation results in Fig. 4
are the same as results performed by simulating Eqs. (16)–(18)
with H 3 replaced by H 1 in Eq. (1), indicating that the
Hamiltonian H 3 in Eq. (13) indeed provides an implementa-
tion of the Bose–Hubbard model in the synthetic frequency
dimension.

Our proposed system requires waveguides with strong non-
linearity and large GVD, which is experimentally challenging
but may be achievable with the current state-of-the-art technol-
ogy. For a ring with the length ∼1 mm, Ω∕2π is ∼10 GHz.
The modulation strength J∕2π can be tuned at the order of
0.1–1 GHz to make the system operate in the weak modulation
regime. As an example, photonic crystal fiber filled with a high-
density atomic gas has the potential to create a nonlinearity
with g∕2π up to ∼1 GHz in the few-photon regime [60].
Moreover, the strong nonlinearity in optical resonators is po-
tentially feasible with other nanophotonic systems [36,61–66],
for example, nanophotonic waveguides incorporated with
rubidium vapors [67–69]. Strong GVD is desired to bring
the phase-mismatching condition jΔkLAj � nπ, which can
be simplified to jβ2LAΩ2j ∼ 2π. The necessary high dispersion
β2 ∼ 10−19 s2∕m is possible with dispersion engineering in the
photonic crystal fiber [70] or by exploiting mode crossing in
coupled waveguides [71]. The theoretical proposal here may
also be implementable in the microwave frequency range using
superconducting quantum circuits [72].

4. CONCLUSION

In summary, we show that a ring resonator undergoing dy-
namic modulation can be used to achieve an interacting

Fig. 4. Normalized distributions of the two-photon correlation probability Pm,n. (a)–(c) The input photon pair is jϕ�−4, 4�i with g � 0, g � 2J ,
and g � 10J , respectively. (d)–(f ) The input photon pair is jϕ�−15, −15�i with g � 0, g � 2J , and g � 10J , respectively. Positions inside two
dashed lines correspond to Pm,m.
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Hamiltonian where the interaction is local along the synthetic
frequency dimension, provided that the ring incorporates χ�3�

nonlinearity, and with a specific design of the GVD of the ring.
Our work complements other emerging efforts in creating
locally interacting Hamiltonians in synthetic space, by showing
that such locally interacting Hamiltonians can be achieved in a
system that has been widely used in photonics. The possibility
of creating locally interacting Hamiltonians in the synthetic fre-
quency dimension is fundamentally important for future stud-
ies of photon-photon interactions and many-body physics with
synthetic dimensions in photonics, with promising potentials
for a variety of quantum optical applications such as quantum
information science and quantum communication technol-
ogy [35,73].

We noticed Ref. [41] when we were in the final stage of
preparing this paper.
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